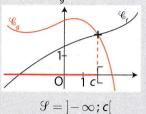
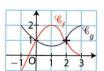

- ▶ Dans un repère, \mathscr{C}_f et \mathscr{C}_a sont les courbes représentatives de deux fonctions f et g. Les solutions de :
- l'équation f(x) = k sont les abscisses des points d'intersection de la droite d'équation v = ket de la courbe $\mathscr{C}_{\mathfrak{f}}$


 l'inéquation f(x) > ksont les abscisses des points de la courbe \mathscr{C}_f situés au-dessus de la droite d'équation y = k.

• l'équation f(x) = g(x)sont les abscisses des points d'intersection des courbes \mathscr{C}_f et \mathscr{C}_g .

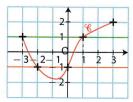
- $\mathcal{G} = \{d; e\}.$
- l'inéquation f(x) < g(x)sont les abscisses des points de la courbe \mathscr{C}_{f} situés au-dessous de la courbe \mathscr{C}_a .

Deux calculs


- Calculer mentalement A = $9 \times \sqrt{0.49} 10$.
- $x \in \mathbb{R}$, $y \in \mathbb{R}$ et 2x + 3y = 1. Exprimer y en fonction de x.

f est la fonction définie sur [-3;4] par la courbe \mathscr{C} dans le repère ci-contre.

Résoudre graphiquement les équations:



- **b.** f(x) = 1
- **c.** f(x) = 2
- $oxed{2}$ Dans le repère ci-contre, $\mathscr{C}_{\mathbf{f}}$ et \mathscr{C}_{a} sont les courbes représentatives des fonctions f et g définies sur [-1; 3].

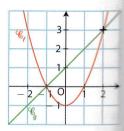
Résoudre graphiquement l'équation f(x) = g(x).

f est la fonction définie sur l'intervalle [-3;3] par la courbe $\mathscr C$ dans le repère ci-contre.

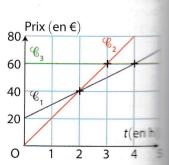
Résoudre graphiquement les inéquations :

a.
$$f(x) < -1$$

b.
$$f(x) \ge 1$$

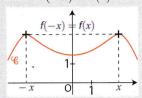

 $oldsymbol{4}$ Dans le repère ci-contre, $\mathscr{C}_{_{\mathbf{f}}}$ et \mathscr{C}_q sont les courbes représentatives des fonctions f et g définies sur l'intervalle [-3; 3].

Résoudre graphiquement l'inéquation f(x) > g(x).

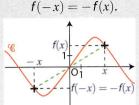

**

5 Dans le repère ci-contre, \mathscr{C}_{f} et \mathscr{C}_a sont les courbes représentatives des fonctions f et g définies sur \mathbb{R} par $f(x) = x^2 - 1$ et g(x) = x + 1.

- 1. a. Résoudre graphiquement l'équation f(x) = g(x).
- b. Vérifier ces résultats par le calcul.
- **2.** Résoudre graphiquement l'inéquation f(x) > g(x).


6 Voici les courbes représentatives $\mathscr{C}_1, \mathscr{C}_2, \mathscr{C}_3$ de trois fonctions P₁, P₂, P₃ qui à une durée t, en h, de location d'un paddle, associe le montant de la location, en €, chez trois loueurs.

- a. Pour quelles durées, le tarif P₁ est-il le plus intéressant?
- **b.** Pour quelles durées, le tarif P₂ est-il le plus intéressant


Parité d'une fonction

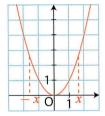
- \blacktriangleright Dire qu'un ensemble D est symétrique par rapport à 0 signifie que pour tout x de D, -x appartient à D. Dans un repère orthonormé, $\mathscr E$ est la courbe représentative d'une fonction f définie sur un ensemble D symétrique par rapport à 0.
- f est une fonction paire lorsque pour tout x de D, f(-x) = f(x).

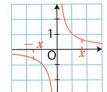
 \mathscr{C} est symétrique par rapport à l'axe des ordonnées.

• f est une **fonction impaire** lorsque pour tout x de D,

 \mathscr{C} est symétrique par rapport à l'origine du repère.

Deux calculs


- Calculer A = $2t^2 \frac{27}{t}$ (avec $t \neq 0$) pour t = -3.
- Un carré a pour coté a (avec a > 0). Exprimer la lonqueur d de sa diagonale en fonction de a.


- 1 Voici dans le repère orthonormé ci-contre, la courbe représentative de la fonction f définie sur \mathbb{R} par $f(x) = x^2$.
- a. Compléter : pour tout nombre réel x,

$$f(-x) = (\dots)^2 = \dots.$$

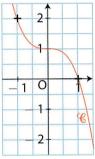
- **b.** Que peut-on dire pour la fonction *f*?
- c. Quelle propriété géométrique de la parabole retrouve-t-on ainsi?

Voici dans le repère ci-contre la courbe représentative de la fonction g définie sur \mathbb{R}^* par $g(x) = \frac{1}{x}$.

a. Compléter : pour tout nombre réel

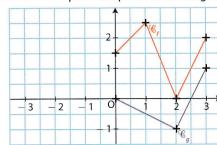
$$x \neq 0, g(-x) = \frac{1}{\dots} = \frac{\dots}{\dots}$$

- **b.** Que peut-on dire alors pour la fonction g?
- c. Quelle propriété géométrique de l'hyperbole retrouvet-on ainsi?


f est la fonction définie sur \mathbb{R} par :

$$f(x) = -x^2 + 2x + 3.$$

- **a.** Calculer les images de 1 et de -1 par f.
- **b.** Que peut-on en déduire pour la parité de la fonction f?
- Voici dans le repère ci-contre la courbe représentative & de la fonction q définie sur \mathbb{R} par :


$$g(x) = -x^3 + 1.$$

- **a.** Lire les images de 1 et de -1 par g.
- b. Que peut-on en déduire pour la parité de la fonction q?
- c. Comment aurait-on pu retrouver ce résultat graphiquement?

Terminer les tracés des courbes \mathscr{C}_f et \mathscr{C}_a représentatives de deux fonctions f et g définies sur [3;3] sachant que la fonction f est paire et que la fonction g est impaire.

